Library Io.Run
A run is an execution of a computation with answers to the calls.
Inductive t {E : Effect.t} : ∀ {A : Type}, C.t E A → A → Type :=
| Ret : ∀ {A} (x : A), t (C.Ret (E := E) A x) x
| Call : ∀ (c : Effect.command E) (a : Effect.answer E c), t (C.Call c) a
| Let : ∀ {A B} {c_x : C.t E A} {x : A} {c_f : A → C.t E B} {y : B},
t c_x x → t (c_f x) y → t (C.Let A B c_x c_f) y
| ChooseLeft : ∀ {A} {c_x1 c_x2 : C.t E A} {x1 : A},
t c_x1 x1 → t (C.Choose A c_x1 c_x2) x1
| ChooseRight : ∀ {A} {c_x1 c_x2 : C.t E A} {x2 : A},
t c_x2 x2 → t (C.Choose A c_x1 c_x2) x2
| Join : ∀ {A B} {c_x : C.t E A} {x : A} {c_y : C.t E B} {y : B},
t c_x x → t c_y y → t (C.Join A B c_x c_y) (x, y).
Module Notations.
Definition ret {E A} (v : A) : t (E := E) (C.Ret _ v) v :=
Ret v.
Definition call (E : Effect.t) (c : Effect.command E) (a : Effect.answer E c)
: t (C.Call c) a :=
Call c a.
| Ret : ∀ {A} (x : A), t (C.Ret (E := E) A x) x
| Call : ∀ (c : Effect.command E) (a : Effect.answer E c), t (C.Call c) a
| Let : ∀ {A B} {c_x : C.t E A} {x : A} {c_f : A → C.t E B} {y : B},
t c_x x → t (c_f x) y → t (C.Let A B c_x c_f) y
| ChooseLeft : ∀ {A} {c_x1 c_x2 : C.t E A} {x1 : A},
t c_x1 x1 → t (C.Choose A c_x1 c_x2) x1
| ChooseRight : ∀ {A} {c_x1 c_x2 : C.t E A} {x2 : A},
t c_x2 x2 → t (C.Choose A c_x1 c_x2) x2
| Join : ∀ {A B} {c_x : C.t E A} {x : A} {c_y : C.t E B} {y : B},
t c_x x → t c_y y → t (C.Join A B c_x c_y) (x, y).
Module Notations.
Definition ret {E A} (v : A) : t (E := E) (C.Ret _ v) v :=
Ret v.
Definition call (E : Effect.t) (c : Effect.command E) (a : Effect.answer E c)
: t (C.Call c) a :=
Call c a.
A nicer notation for `Let`.
Let ignoring the unit answer.
Notation "´rdo!´ X ´in´ Y" :=
(Let (A := unit) X Y)
(at level 200, X at level 100, Y at level 200).
Definition choose_left {E A} {x1 x2 : C.t E A} {v1 : A} (r1 : t x1 v1)
: t (C.Choose _ x1 x2) v1 :=
ChooseLeft r1.
Definition choose_right {E A} {x1 x2 : C.t E A} {v2 : A} (r2 : t x2 v2)
: t (C.Choose _ x1 x2) v2 :=
ChooseRight r2.
Definition join {E A B} {x : C.t E A} {y : C.t E B} {v_x : A} {v_y : B}
(r_x : t x v_x) (r_y : t y v_y) : t (C.Join _ _ x y) (v_x, v_y) :=
Join r_x r_y.
End Notations.
Module I.
(Let (A := unit) X Y)
(at level 200, X at level 100, Y at level 200).
Definition choose_left {E A} {x1 x2 : C.t E A} {v1 : A} (r1 : t x1 v1)
: t (C.Choose _ x1 x2) v1 :=
ChooseLeft r1.
Definition choose_right {E A} {x1 x2 : C.t E A} {v2 : A} (r2 : t x2 v2)
: t (C.Choose _ x1 x2) v2 :=
ChooseRight r2.
Definition join {E A B} {x : C.t E A} {y : C.t E B} {v_x : A} {v_y : B}
(r_x : t x v_x) (r_y : t y v_y) : t (C.Join _ _ x y) (v_x, v_y) :=
Join r_x r_y.
End Notations.
Module I.
A run of an infinite computation.
CoInductive t {E : Effect.t} : ∀ {A : Type}, C.I.t E A → A → Type :=
| Ret : ∀ {A} (x : A), t (C.I.Ret (E := E) A x) x
| Call : ∀ (c : Effect.command E) (answer : Effect.answer E c),
t (C.I.Call (E := E) c) answer
| Let : ∀ {A B} {c_x : C.I.t E A} {x : A} {c_f : A → C.I.t E B} {y : B},
t c_x x → t (c_f x) y → t (C.I.Let A B c_x c_f) y
| ChooseLeft : ∀ {A} {c_x1 c_x2 : C.I.t E A} {x1 : A},
t c_x1 x1 → t (C.I.Choose A c_x1 c_x2) x1
| ChooseRight : ∀ {A} {c_x1 c_x2 : C.I.t E A} {x2 : A},
t c_x2 x2 → t (C.I.Choose A c_x1 c_x2) x2
| Join : ∀ {A B} {c_x : C.I.t E A} {x : A} {c_y : C.I.t E B} {y : B},
t c_x x → t c_y y → t (C.I.Join A B c_x c_y) (x, y).
Module Notations.
Definition ret {E A} (v : A) : t (E := E) (C.I.Ret _ v) v :=
Ret v.
Definition call (E : Effect.t) (c : Effect.command E)
(a : Effect.answer E c) : t (C.I.Call c) a :=
Call c a.
| Ret : ∀ {A} (x : A), t (C.I.Ret (E := E) A x) x
| Call : ∀ (c : Effect.command E) (answer : Effect.answer E c),
t (C.I.Call (E := E) c) answer
| Let : ∀ {A B} {c_x : C.I.t E A} {x : A} {c_f : A → C.I.t E B} {y : B},
t c_x x → t (c_f x) y → t (C.I.Let A B c_x c_f) y
| ChooseLeft : ∀ {A} {c_x1 c_x2 : C.I.t E A} {x1 : A},
t c_x1 x1 → t (C.I.Choose A c_x1 c_x2) x1
| ChooseRight : ∀ {A} {c_x1 c_x2 : C.I.t E A} {x2 : A},
t c_x2 x2 → t (C.I.Choose A c_x1 c_x2) x2
| Join : ∀ {A B} {c_x : C.I.t E A} {x : A} {c_y : C.I.t E B} {y : B},
t c_x x → t c_y y → t (C.I.Join A B c_x c_y) (x, y).
Module Notations.
Definition ret {E A} (v : A) : t (E := E) (C.I.Ret _ v) v :=
Ret v.
Definition call (E : Effect.t) (c : Effect.command E)
(a : Effect.answer E c) : t (C.I.Call c) a :=
Call c a.
A nicer notation for `Let`.
Let ignoring the unit answer.
Notation "´rdo!´ X ´in´ Y" :=
(Let (A := unit) X Y)
(at level 200, X at level 100, Y at level 200).
Definition choose_left {E A} {x1 x2 : C.I.t E A} {v1 : A} (r1 : t x1 v1)
: t (C.I.Choose _ x1 x2) v1 :=
ChooseLeft r1.
Definition choose_right {E A} {x1 x2 : C.I.t E A} {v2 : A} (r2 : t x2 v2)
: t (C.I.Choose _ x1 x2) v2 :=
ChooseRight r2.
Definition join {E A B} {x : C.I.t E A} {y : C.I.t E B} {v_x : A} {v_y : B}
(r_x : t x v_x) (r_y : t y v_y) : t (C.I.Join _ _ x y) (v_x, v_y) :=
Join r_x r_y.
End Notations.
Definition unfold {E A} {c_x : C.I.t E A} {v_x : A} (r_x : t c_x v_x)
: t c_x v_x :=
match r_x with
| Ret _ v ⇒ Ret v
| Call c a ⇒ Call c a
| Let _ _ _ _ _ _ r_x r_y ⇒ Let r_x r_y
| ChooseLeft _ _ _ _ r_x1 ⇒ ChooseLeft r_x1
| ChooseRight _ _ _ _ r_x2 ⇒ ChooseRight r_x2
| Join _ _ _ _ _ _ r_x r_y ⇒ Join r_x r_y
end.
Definition unfold_eq {E A} {c_x : C.I.t E A} {v_x : A} (r_x : t c_x v_x)
: r_x = unfold r_x.
destruct r_x; reflexivity.
Defined.
Module Eq.
CoInductive t {E} : ∀ {A} {x1 x2 : C.I.t E A} {v1 v2 : A},
Run.I.t x1 v1 → Run.I.t x2 v2 → Prop :=
| Ret : ∀ A (v : A), t (Ret v) (Ret v)
| Call : ∀ c a, t (Call c a) (Call c a)
| Let : ∀ A B (c_x1 c_x2 : C.I.t E A) (v_x1 v_x2 : A)
(c_f1 c_f2 : A → C.I.t E B) (v_y1 v_y2 : B)
(r_x1 : Run.I.t c_x1 v_x1) (r_x2 : Run.I.t c_x2 v_x2)
(r_y1 : Run.I.t (c_f1 v_x1) v_y1) (r_y2 : Run.I.t (c_f2 v_x2) v_y2),
t r_x1 r_x2 → t r_y1 r_y2 → t (Let r_x1 r_y1) (Let r_x2 r_y2)
| ChooseLeft : ∀ A (c_x11 c_x12 c_x21 c_x22 : C.I.t E A)
(v_x11 v_x12 : A)
(r_x11 : Run.I.t c_x11 v_x11) (r_x12 : Run.I.t c_x12 v_x12),
t r_x11 r_x12 →
t (ChooseLeft (c_x2 := c_x21) r_x11) (ChooseLeft (c_x2 := c_x22) r_x12)
| ChooseRight : ∀ A (c_x11 c_x12 c_x21 c_x22 : C.I.t E A)
(v_x21 v_x22 : A)
(r_x21 : Run.I.t c_x21 v_x21) (r_x22 : Run.I.t c_x22 v_x22),
t r_x21 r_x22 →
t (ChooseRight (c_x1 := c_x11) r_x21) (ChooseRight (c_x1 := c_x12) r_x22)
| Join : ∀ A B (c_x1 c_x2 : C.I.t E A) (c_y1 c_y2 : C.I.t E B)
(v_x1 v_x2 : A) (v_y1 v_y2 : B)
(r_x1 : Run.I.t c_x1 v_x1) (r_x2 : Run.I.t c_x2 v_x2)
(r_y1 : Run.I.t c_y1 v_y1) (r_y2 : Run.I.t c_y2 v_y2),
t r_x1 r_x2 → t r_y1 r_y2 → t (Join r_x1 r_y1) (Join r_x2 r_y2).
End Eq.
(Let (A := unit) X Y)
(at level 200, X at level 100, Y at level 200).
Definition choose_left {E A} {x1 x2 : C.I.t E A} {v1 : A} (r1 : t x1 v1)
: t (C.I.Choose _ x1 x2) v1 :=
ChooseLeft r1.
Definition choose_right {E A} {x1 x2 : C.I.t E A} {v2 : A} (r2 : t x2 v2)
: t (C.I.Choose _ x1 x2) v2 :=
ChooseRight r2.
Definition join {E A B} {x : C.I.t E A} {y : C.I.t E B} {v_x : A} {v_y : B}
(r_x : t x v_x) (r_y : t y v_y) : t (C.I.Join _ _ x y) (v_x, v_y) :=
Join r_x r_y.
End Notations.
Definition unfold {E A} {c_x : C.I.t E A} {v_x : A} (r_x : t c_x v_x)
: t c_x v_x :=
match r_x with
| Ret _ v ⇒ Ret v
| Call c a ⇒ Call c a
| Let _ _ _ _ _ _ r_x r_y ⇒ Let r_x r_y
| ChooseLeft _ _ _ _ r_x1 ⇒ ChooseLeft r_x1
| ChooseRight _ _ _ _ r_x2 ⇒ ChooseRight r_x2
| Join _ _ _ _ _ _ r_x r_y ⇒ Join r_x r_y
end.
Definition unfold_eq {E A} {c_x : C.I.t E A} {v_x : A} (r_x : t c_x v_x)
: r_x = unfold r_x.
destruct r_x; reflexivity.
Defined.
Module Eq.
CoInductive t {E} : ∀ {A} {x1 x2 : C.I.t E A} {v1 v2 : A},
Run.I.t x1 v1 → Run.I.t x2 v2 → Prop :=
| Ret : ∀ A (v : A), t (Ret v) (Ret v)
| Call : ∀ c a, t (Call c a) (Call c a)
| Let : ∀ A B (c_x1 c_x2 : C.I.t E A) (v_x1 v_x2 : A)
(c_f1 c_f2 : A → C.I.t E B) (v_y1 v_y2 : B)
(r_x1 : Run.I.t c_x1 v_x1) (r_x2 : Run.I.t c_x2 v_x2)
(r_y1 : Run.I.t (c_f1 v_x1) v_y1) (r_y2 : Run.I.t (c_f2 v_x2) v_y2),
t r_x1 r_x2 → t r_y1 r_y2 → t (Let r_x1 r_y1) (Let r_x2 r_y2)
| ChooseLeft : ∀ A (c_x11 c_x12 c_x21 c_x22 : C.I.t E A)
(v_x11 v_x12 : A)
(r_x11 : Run.I.t c_x11 v_x11) (r_x12 : Run.I.t c_x12 v_x12),
t r_x11 r_x12 →
t (ChooseLeft (c_x2 := c_x21) r_x11) (ChooseLeft (c_x2 := c_x22) r_x12)
| ChooseRight : ∀ A (c_x11 c_x12 c_x21 c_x22 : C.I.t E A)
(v_x21 v_x22 : A)
(r_x21 : Run.I.t c_x21 v_x21) (r_x22 : Run.I.t c_x22 v_x22),
t r_x21 r_x22 →
t (ChooseRight (c_x1 := c_x11) r_x21) (ChooseRight (c_x1 := c_x12) r_x22)
| Join : ∀ A B (c_x1 c_x2 : C.I.t E A) (c_y1 c_y2 : C.I.t E B)
(v_x1 v_x2 : A) (v_y1 v_y2 : B)
(r_x1 : Run.I.t c_x1 v_x1) (r_x2 : Run.I.t c_x2 v_x2)
(r_y1 : Run.I.t c_y1 v_y1) (r_y2 : Run.I.t c_y2 v_y2),
t r_x1 r_x2 → t r_y1 r_y2 → t (Join r_x1 r_y1) (Join r_x2 r_y2).
End Eq.
A lift from the finite runs.
Fixpoint lift {E A} {x : C.t E A} {v : A} (r : Run.t x v) : t (C.I.lift x) v.
destruct r; simpl.
- apply Ret.
- apply Call.
- eapply Let.
+ apply (lift _ _ _ _ r1).
+ apply (lift _ _ _ _ r2).
- apply ChooseLeft.
apply (lift _ _ _ _ r).
- apply ChooseRight.
apply (lift _ _ _ _ r).
- apply Join.
+ apply (lift _ _ _ _ r1).
+ apply (lift _ _ _ _ r2).
Defined.
End I.
destruct r; simpl.
- apply Ret.
- apply Call.
- eapply Let.
+ apply (lift _ _ _ _ r1).
+ apply (lift _ _ _ _ r2).
- apply ChooseLeft.
apply (lift _ _ _ _ r).
- apply ChooseRight.
apply (lift _ _ _ _ r).
- apply Join.
+ apply (lift _ _ _ _ r1).
+ apply (lift _ _ _ _ r2).
Defined.
End I.