Library Io.Trace
Semantic of the comutations using traces.
Require C.
Require Run.
Inductive t (E : Effect.t) : Type :=
| Ret : t E
| Call : ∀ c, Effect.answer E c → t E
| Let : t E → t E → t E
| ChooseLeft : t E → t E
| ChooseRight : t E → t E
| Join : t E → t E → t E.
Arguments Ret {E}.
Arguments Call {E} _ _.
Arguments Let {E} _ _.
Arguments ChooseLeft {E} _.
Arguments ChooseRight {E} _.
Arguments Join {E} _ _.
Module Notations.
Definition ret {E} : t E :=
Ret.
Definition call (E : Effect.t) (c : Effect.command E) (a : Effect.answer E c)
: t E :=
Call c a.
Require Run.
Inductive t (E : Effect.t) : Type :=
| Ret : t E
| Call : ∀ c, Effect.answer E c → t E
| Let : t E → t E → t E
| ChooseLeft : t E → t E
| ChooseRight : t E → t E
| Join : t E → t E → t E.
Arguments Ret {E}.
Arguments Call {E} _ _.
Arguments Let {E} _ _.
Arguments ChooseLeft {E} _.
Arguments ChooseRight {E} _.
Arguments Join {E} _ _.
Module Notations.
Definition ret {E} : t E :=
Ret.
Definition call (E : Effect.t) (c : Effect.command E) (a : Effect.answer E c)
: t E :=
Call c a.
A nicer notation for `Let`.
Notation "´tlet!´ X ´in´ Y" :=
(Let X Y)
(at level 200, X at level 100, Y at level 200).
Definition choose_left {E} (tr : t E) : t E :=
ChooseLeft tr.
Definition choose_right {E} (tr : t E) : t E :=
ChooseRight tr.
Definition join {E} (tr_x tr_y : t E) : t E :=
Join tr_x tr_y.
End Notations.
Module Valid.
Inductive t {E} : ∀ {A}, C.t E A → Trace.t E → A → Type :=
| Ret : ∀ A (v : A), t (C.Ret A v) Trace.Ret v
| Call : ∀ c (a : Effect.answer E c), t (C.Call c) (Trace.Call c a) a
| Let : ∀ A B (x : C.t E A) (f : A → C.t E B) (t_x t_y : Trace.t E)
(v_x : A) (v_y : B),
t x t_x v_x → t (f v_x) t_y v_y →
t (C.Let _ _ x f) (Trace.Let t_x t_y) v_y
| ChooseLeft : ∀ A (x1 x2 : C.t E A) (t_x1 : Trace.t E) (v_x1 : A),
t x1 t_x1 v_x1 → t (C.Choose _ x1 x2) (Trace.ChooseLeft t_x1) v_x1
| ChooseRight : ∀ A (x1 x2 : C.t E A) (t_x2 : Trace.t E) (v_x2 : A),
t x2 t_x2 v_x2 → t (C.Choose _ x1 x2) (Trace.ChooseRight t_x2) v_x2
| Join : ∀ A B (x : C.t E A) (y : C.t E B) (t_x t_y : Trace.t E)
(v_x : A) (v_y : B),
t x t_x v_x → t y t_y v_y →
t (C.Join _ _ x y) (Trace.Join t_x t_y) (v_x, v_y).
End Valid.
Fixpoint of_run {E A} {x : C.t E A} {v_x : A} (r_x : Run.t x v_x)
: {t_x : Trace.t E & Valid.t x t_x v_x}.
destruct r_x.
- ∃ Trace.Ret.
apply Valid.Ret.
- ∃ (Trace.Call c a).
apply Valid.Call.
- destruct (of_run _ _ _ _ r_x1) as [t_x H_x].
destruct (of_run _ _ _ _ r_x2) as [t_y H_y].
∃ (Trace.Let t_x t_y).
now apply Valid.Let with (v_x := x).
- destruct (of_run _ _ _ _ r_x) as [t_x1 H_x1].
∃ (Trace.ChooseLeft t_x1).
now apply Valid.ChooseLeft.
- destruct (of_run _ _ _ _ r_x) as [t_x2 H_x2].
∃ (Trace.ChooseRight t_x2).
now apply Valid.ChooseRight.
- destruct (of_run _ _ _ _ r_x1) as [t_x H_x].
destruct (of_run _ _ _ _ r_x2) as [t_y H_y].
∃ (Trace.Join t_x t_y).
now apply Valid.Join.
Defined.
Fixpoint to_run {E A} {x : C.t E A} {t_x : Trace.t E} {v_x : A}
(H : Valid.t x t_x v_x) : Run.t x v_x.
destruct H.
- apply Run.Ret.
- apply Run.Call.
- eapply Run.Let.
+ eapply to_run.
apply H.
+ eapply to_run.
apply H0.
- apply Run.ChooseLeft.
eapply to_run.
apply H.
- apply Run.ChooseRight.
eapply to_run.
apply H.
- apply Run.Join.
+ eapply to_run.
apply H.
+ eapply to_run.
apply H0.
Defined.
Fixpoint of_to_run {E A} {x : C.t E A} {t_x : Trace.t E} {v_x : A}
(H : Valid.t x t_x v_x) : of_run (to_run H) = existT _ t_x H.
destruct H; simpl.
- reflexivity.
- reflexivity.
- rewrite (of_to_run _ _ _ _ _ H).
rewrite (of_to_run _ _ _ _ _ H0).
reflexivity.
- rewrite (of_to_run _ _ _ _ _ H).
reflexivity.
- rewrite (of_to_run _ _ _ _ _ H).
reflexivity.
- rewrite (of_to_run _ _ _ _ _ H).
rewrite (of_to_run _ _ _ _ _ H0).
reflexivity.
Qed.
Fixpoint to_of_run {E A} {x : C.t E A} {v_x : A} (r_x : Run.t x v_x)
: (let (_, H) := of_run r_x in to_run H) = r_x.
destruct r_x; simpl.
- reflexivity.
- reflexivity.
- assert (H1 := to_of_run _ _ _ _ r_x1).
destruct (of_run r_x1) as [t_x1 H_x1].
assert (H2 := to_of_run _ _ _ _ r_x2).
destruct (of_run r_x2) as [t_x2 H_x2].
simpl.
now rewrite H1; rewrite H2.
- assert (H := to_of_run _ _ _ _ r_x).
destruct (of_run r_x) as [t_x H_x].
simpl.
now rewrite H.
- assert (H := to_of_run _ _ _ _ r_x).
destruct (of_run r_x) as [t_x H_x].
simpl.
now rewrite H.
- assert (H1 := to_of_run _ _ _ _ r_x1).
destruct (of_run r_x1) as [t_x1 H_x1].
assert (H2 := to_of_run _ _ _ _ r_x2).
destruct (of_run r_x2) as [t_x2 H_x2].
simpl.
now rewrite H1; rewrite H2.
Qed.
Module I.
CoInductive t (E : Effect.t) : Type :=
| Ret : t E
| Call : ∀ c, Effect.answer E c → t E
| Let : t E → t E → t E
| ChooseLeft : t E → t E
| ChooseRight : t E → t E
| Join : t E → t E → t E.
Arguments Ret {E}.
Arguments Call {E} _ _.
Arguments Let {E} _ _.
Arguments ChooseLeft {E} _.
Arguments ChooseRight {E} _.
Arguments Join {E} _ _.
Module Notations.
Definition ret {E} : t E :=
Ret.
Definition call (E : Effect.t) (c : Effect.command E)
(a : Effect.answer E c) : t E :=
Call c a.
(Let X Y)
(at level 200, X at level 100, Y at level 200).
Definition choose_left {E} (tr : t E) : t E :=
ChooseLeft tr.
Definition choose_right {E} (tr : t E) : t E :=
ChooseRight tr.
Definition join {E} (tr_x tr_y : t E) : t E :=
Join tr_x tr_y.
End Notations.
Module Valid.
Inductive t {E} : ∀ {A}, C.t E A → Trace.t E → A → Type :=
| Ret : ∀ A (v : A), t (C.Ret A v) Trace.Ret v
| Call : ∀ c (a : Effect.answer E c), t (C.Call c) (Trace.Call c a) a
| Let : ∀ A B (x : C.t E A) (f : A → C.t E B) (t_x t_y : Trace.t E)
(v_x : A) (v_y : B),
t x t_x v_x → t (f v_x) t_y v_y →
t (C.Let _ _ x f) (Trace.Let t_x t_y) v_y
| ChooseLeft : ∀ A (x1 x2 : C.t E A) (t_x1 : Trace.t E) (v_x1 : A),
t x1 t_x1 v_x1 → t (C.Choose _ x1 x2) (Trace.ChooseLeft t_x1) v_x1
| ChooseRight : ∀ A (x1 x2 : C.t E A) (t_x2 : Trace.t E) (v_x2 : A),
t x2 t_x2 v_x2 → t (C.Choose _ x1 x2) (Trace.ChooseRight t_x2) v_x2
| Join : ∀ A B (x : C.t E A) (y : C.t E B) (t_x t_y : Trace.t E)
(v_x : A) (v_y : B),
t x t_x v_x → t y t_y v_y →
t (C.Join _ _ x y) (Trace.Join t_x t_y) (v_x, v_y).
End Valid.
Fixpoint of_run {E A} {x : C.t E A} {v_x : A} (r_x : Run.t x v_x)
: {t_x : Trace.t E & Valid.t x t_x v_x}.
destruct r_x.
- ∃ Trace.Ret.
apply Valid.Ret.
- ∃ (Trace.Call c a).
apply Valid.Call.
- destruct (of_run _ _ _ _ r_x1) as [t_x H_x].
destruct (of_run _ _ _ _ r_x2) as [t_y H_y].
∃ (Trace.Let t_x t_y).
now apply Valid.Let with (v_x := x).
- destruct (of_run _ _ _ _ r_x) as [t_x1 H_x1].
∃ (Trace.ChooseLeft t_x1).
now apply Valid.ChooseLeft.
- destruct (of_run _ _ _ _ r_x) as [t_x2 H_x2].
∃ (Trace.ChooseRight t_x2).
now apply Valid.ChooseRight.
- destruct (of_run _ _ _ _ r_x1) as [t_x H_x].
destruct (of_run _ _ _ _ r_x2) as [t_y H_y].
∃ (Trace.Join t_x t_y).
now apply Valid.Join.
Defined.
Fixpoint to_run {E A} {x : C.t E A} {t_x : Trace.t E} {v_x : A}
(H : Valid.t x t_x v_x) : Run.t x v_x.
destruct H.
- apply Run.Ret.
- apply Run.Call.
- eapply Run.Let.
+ eapply to_run.
apply H.
+ eapply to_run.
apply H0.
- apply Run.ChooseLeft.
eapply to_run.
apply H.
- apply Run.ChooseRight.
eapply to_run.
apply H.
- apply Run.Join.
+ eapply to_run.
apply H.
+ eapply to_run.
apply H0.
Defined.
Fixpoint of_to_run {E A} {x : C.t E A} {t_x : Trace.t E} {v_x : A}
(H : Valid.t x t_x v_x) : of_run (to_run H) = existT _ t_x H.
destruct H; simpl.
- reflexivity.
- reflexivity.
- rewrite (of_to_run _ _ _ _ _ H).
rewrite (of_to_run _ _ _ _ _ H0).
reflexivity.
- rewrite (of_to_run _ _ _ _ _ H).
reflexivity.
- rewrite (of_to_run _ _ _ _ _ H).
reflexivity.
- rewrite (of_to_run _ _ _ _ _ H).
rewrite (of_to_run _ _ _ _ _ H0).
reflexivity.
Qed.
Fixpoint to_of_run {E A} {x : C.t E A} {v_x : A} (r_x : Run.t x v_x)
: (let (_, H) := of_run r_x in to_run H) = r_x.
destruct r_x; simpl.
- reflexivity.
- reflexivity.
- assert (H1 := to_of_run _ _ _ _ r_x1).
destruct (of_run r_x1) as [t_x1 H_x1].
assert (H2 := to_of_run _ _ _ _ r_x2).
destruct (of_run r_x2) as [t_x2 H_x2].
simpl.
now rewrite H1; rewrite H2.
- assert (H := to_of_run _ _ _ _ r_x).
destruct (of_run r_x) as [t_x H_x].
simpl.
now rewrite H.
- assert (H := to_of_run _ _ _ _ r_x).
destruct (of_run r_x) as [t_x H_x].
simpl.
now rewrite H.
- assert (H1 := to_of_run _ _ _ _ r_x1).
destruct (of_run r_x1) as [t_x1 H_x1].
assert (H2 := to_of_run _ _ _ _ r_x2).
destruct (of_run r_x2) as [t_x2 H_x2].
simpl.
now rewrite H1; rewrite H2.
Qed.
Module I.
CoInductive t (E : Effect.t) : Type :=
| Ret : t E
| Call : ∀ c, Effect.answer E c → t E
| Let : t E → t E → t E
| ChooseLeft : t E → t E
| ChooseRight : t E → t E
| Join : t E → t E → t E.
Arguments Ret {E}.
Arguments Call {E} _ _.
Arguments Let {E} _ _.
Arguments ChooseLeft {E} _.
Arguments ChooseRight {E} _.
Arguments Join {E} _ _.
Module Notations.
Definition ret {E} : t E :=
Ret.
Definition call (E : Effect.t) (c : Effect.command E)
(a : Effect.answer E c) : t E :=
Call c a.
A nicer notation for `Let`.
Notation "´tilet!´ X ´in´ Y" :=
(Let X Y)
(at level 200, X at level 100, Y at level 200).
Definition choose_left {E} (tr : t E) : t E :=
ChooseLeft tr.
Definition choose_right {E} (tr : t E) : t E :=
ChooseRight tr.
Definition join {E} (tr_x tr_y : t E) : t E :=
Join tr_x tr_y.
End Notations.
Definition unfold {E} (t : Trace.I.t E) : Trace.I.t E :=
match t with
| Ret ⇒ Ret
| Call c a ⇒ Call c a
| Let t_x t_f ⇒ Let t_x t_f
| ChooseLeft t ⇒ ChooseLeft t
| ChooseRight t ⇒ ChooseRight t
| Join t_x t_y ⇒ Join t_x t_y
end.
Definition unfold_eq {E} (t : Trace.I.t E) : t = unfold t.
destruct t; reflexivity.
Defined.
Module Eq.
CoInductive t {E} : Trace.I.t E → Trace.I.t E → Prop :=
| Ret : t Ret Ret
| Call : ∀ c a, t (Call c a) (Call c a)
| Let : ∀ t_x1 t_x2 t_f1 t_f2, t t_x1 t_x2 → t t_f1 t_f2 →
t (Let t_x1 t_f1) (Let t_x2 t_f2)
| ChooseLeft : ∀ t1 t2, t t1 t2 →
t (ChooseLeft t1) (ChooseLeft t2)
| ChooseRight : ∀ t1 t2, t t1 t2 →
t (ChooseRight t1) (ChooseRight t2)
| Join : ∀ t_x1 t_x2 t_y1 t_y2, t t_x1 t_x2 → t t_y1 t_y2 →
t (Join t_x1 t_y1) (Join t_x2 t_y2).
End Eq.
Module Valid.
CoInductive t {E} : ∀ {A}, C.I.t E A → Trace.I.t E → A → Type :=
| Ret : ∀ A (v : A), t (C.I.Ret A v) Trace.I.Ret v
| Call : ∀ c (a : Effect.answer E c),
t (C.I.Call c) (Trace.I.Call c a) a
| Let : ∀ A B (x : C.I.t E A) (f : A → C.I.t E B)
(t_x t_y : Trace.I.t E) (v_x : A) (v_y : B),
t x t_x v_x → t (f v_x) t_y v_y →
t (C.I.Let _ _ x f) (Trace.I.Let t_x t_y) v_y
| ChooseLeft : ∀ A (x1 x2 : C.I.t E A) (t_x1 : Trace.I.t E) (v_x1 : A),
t x1 t_x1 v_x1 → t (C.I.Choose _ x1 x2) (Trace.I.ChooseLeft t_x1) v_x1
| ChooseRight : ∀ A (x1 x2 : C.I.t E A) (t_x2 : Trace.I.t E) (v_x2 : A),
t x2 t_x2 v_x2 → t (C.I.Choose _ x1 x2) (Trace.I.ChooseRight t_x2) v_x2
| Join : ∀ A B (x : C.I.t E A) (y : C.I.t E B) (t_x t_y : Trace.I.t E)
(v_x : A) (v_y : B),
t x t_x v_x → t y t_y v_y →
t (C.I.Join _ _ x y) (Trace.I.Join t_x t_y) (v_x, v_y).
Arguments Ret {E A} _.
Arguments Call {E} _ _.
Arguments Let {E A B x f t_x t_y v_x v_y} _ _.
Arguments ChooseLeft {E A x1 x2 t_x1 v_x1} _.
Arguments ChooseRight {E A x1 x2 t_x2 v_x2} _.
Arguments Join {E A B x y t_x t_y v_x v_y} _ _.
Definition unfold {E A} {x : C.I.t E A} {t : Trace.I.t E} {v : A}
(H : Valid.t x t v) : Valid.t x t v :=
match H with
| Ret _ v ⇒ Ret v
| Call c a ⇒ Call c a
| Let _ _ _ _ _ _ _ _ H_x H_f ⇒ Let H_x H_f
| ChooseLeft _ _ _ _ _ H_x1 ⇒ ChooseLeft H_x1
| ChooseRight _ _ _ _ _ H_x2 ⇒ ChooseRight H_x2
| Join _ _ _ _ _ _ _ _ H_x H_y ⇒ Join H_x H_y
end.
Definition unfold_eq {E A} {x : C.I.t E A} {t : Trace.I.t E} {v : A}
(H : Valid.t x t v) : H = unfold H.
destruct H; reflexivity.
Defined.
End Valid.
CoFixpoint trace_of_run {E A} {x : C.I.t E A} {v_x : A} (r_x : Run.I.t x v_x)
: Trace.I.t E.
destruct r_x.
- exact Trace.I.Ret.
- exact (Trace.I.Call c answer).
- exact (Trace.I.Let (trace_of_run _ _ _ _ r_x1) (trace_of_run _ _ _ _ r_x2)).
- exact (Trace.I.ChooseLeft (trace_of_run _ _ _ _ r_x)).
- exact (Trace.I.ChooseRight (trace_of_run _ _ _ _ r_x)).
- exact (Trace.I.Join
(trace_of_run _ _ _ _ r_x1) (trace_of_run _ _ _ _ r_x2)).
Defined.
CoFixpoint valid_of_run {E A} {x : C.I.t E A} {v_x : A} (r_x : Run.I.t x v_x)
: Valid.t x (trace_of_run r_x) v_x.
rewrite (Trace.I.unfold_eq (trace_of_run _)).
destruct r_x; simpl.
- apply Valid.Ret.
- apply Valid.Call.
- eapply Valid.Let; apply valid_of_run.
- apply Valid.ChooseLeft; apply valid_of_run.
- apply Valid.ChooseRight; apply valid_of_run.
- apply Valid.Join; apply valid_of_run.
Defined.
CoFixpoint to_run {E A} {x : C.I.t E A} {t_x : Trace.I.t E} {v_x : A}
(H : Valid.t x t_x v_x) : Run.I.t x v_x.
destruct H.
- apply Run.I.Ret.
- apply Run.I.Call.
- eapply Run.I.Let.
+ eapply to_run.
apply H.
+ eapply to_run.
apply H0.
- apply Run.I.ChooseLeft.
eapply to_run.
apply H.
- apply Run.I.ChooseRight.
eapply to_run.
apply H.
- apply Run.I.Join.
+ eapply to_run.
apply H.
+ eapply to_run.
apply H0.
Defined.
CoFixpoint trace_of_to_run {E A} {x : C.I.t E A} {t_x : Trace.I.t E} {v_x : A}
(H : Valid.t x t_x v_x) : Trace.I.Eq.t (trace_of_run (to_run H)) t_x.
rewrite (Trace.I.unfold_eq (trace_of_run _)).
destruct H; simpl.
- apply Trace.I.Eq.Ret.
- apply Trace.I.Eq.Call.
- apply Trace.I.Eq.Let; apply trace_of_to_run.
- apply Trace.I.Eq.ChooseLeft; apply trace_of_to_run.
- apply Trace.I.Eq.ChooseRight; apply trace_of_to_run.
- apply Trace.I.Eq.Join; apply trace_of_to_run.
Qed.
CoFixpoint to_of_run {E A} {x : C.I.t E A} {v : A} (r : Run.I.t x v)
: Run.I.Eq.t (to_run (valid_of_run r)) r.
rewrite (Run.I.unfold_eq (to_run _)).
destruct r; simpl.
- apply Run.I.Eq.Ret.
- apply Run.I.Eq.Call.
- apply Run.I.Eq.Let; apply to_of_run.
- apply Run.I.Eq.ChooseLeft; apply to_of_run.
- apply Run.I.Eq.ChooseRight; apply to_of_run.
- apply Run.I.Eq.Join; apply to_of_run.
Qed.
End I.
(Let X Y)
(at level 200, X at level 100, Y at level 200).
Definition choose_left {E} (tr : t E) : t E :=
ChooseLeft tr.
Definition choose_right {E} (tr : t E) : t E :=
ChooseRight tr.
Definition join {E} (tr_x tr_y : t E) : t E :=
Join tr_x tr_y.
End Notations.
Definition unfold {E} (t : Trace.I.t E) : Trace.I.t E :=
match t with
| Ret ⇒ Ret
| Call c a ⇒ Call c a
| Let t_x t_f ⇒ Let t_x t_f
| ChooseLeft t ⇒ ChooseLeft t
| ChooseRight t ⇒ ChooseRight t
| Join t_x t_y ⇒ Join t_x t_y
end.
Definition unfold_eq {E} (t : Trace.I.t E) : t = unfold t.
destruct t; reflexivity.
Defined.
Module Eq.
CoInductive t {E} : Trace.I.t E → Trace.I.t E → Prop :=
| Ret : t Ret Ret
| Call : ∀ c a, t (Call c a) (Call c a)
| Let : ∀ t_x1 t_x2 t_f1 t_f2, t t_x1 t_x2 → t t_f1 t_f2 →
t (Let t_x1 t_f1) (Let t_x2 t_f2)
| ChooseLeft : ∀ t1 t2, t t1 t2 →
t (ChooseLeft t1) (ChooseLeft t2)
| ChooseRight : ∀ t1 t2, t t1 t2 →
t (ChooseRight t1) (ChooseRight t2)
| Join : ∀ t_x1 t_x2 t_y1 t_y2, t t_x1 t_x2 → t t_y1 t_y2 →
t (Join t_x1 t_y1) (Join t_x2 t_y2).
End Eq.
Module Valid.
CoInductive t {E} : ∀ {A}, C.I.t E A → Trace.I.t E → A → Type :=
| Ret : ∀ A (v : A), t (C.I.Ret A v) Trace.I.Ret v
| Call : ∀ c (a : Effect.answer E c),
t (C.I.Call c) (Trace.I.Call c a) a
| Let : ∀ A B (x : C.I.t E A) (f : A → C.I.t E B)
(t_x t_y : Trace.I.t E) (v_x : A) (v_y : B),
t x t_x v_x → t (f v_x) t_y v_y →
t (C.I.Let _ _ x f) (Trace.I.Let t_x t_y) v_y
| ChooseLeft : ∀ A (x1 x2 : C.I.t E A) (t_x1 : Trace.I.t E) (v_x1 : A),
t x1 t_x1 v_x1 → t (C.I.Choose _ x1 x2) (Trace.I.ChooseLeft t_x1) v_x1
| ChooseRight : ∀ A (x1 x2 : C.I.t E A) (t_x2 : Trace.I.t E) (v_x2 : A),
t x2 t_x2 v_x2 → t (C.I.Choose _ x1 x2) (Trace.I.ChooseRight t_x2) v_x2
| Join : ∀ A B (x : C.I.t E A) (y : C.I.t E B) (t_x t_y : Trace.I.t E)
(v_x : A) (v_y : B),
t x t_x v_x → t y t_y v_y →
t (C.I.Join _ _ x y) (Trace.I.Join t_x t_y) (v_x, v_y).
Arguments Ret {E A} _.
Arguments Call {E} _ _.
Arguments Let {E A B x f t_x t_y v_x v_y} _ _.
Arguments ChooseLeft {E A x1 x2 t_x1 v_x1} _.
Arguments ChooseRight {E A x1 x2 t_x2 v_x2} _.
Arguments Join {E A B x y t_x t_y v_x v_y} _ _.
Definition unfold {E A} {x : C.I.t E A} {t : Trace.I.t E} {v : A}
(H : Valid.t x t v) : Valid.t x t v :=
match H with
| Ret _ v ⇒ Ret v
| Call c a ⇒ Call c a
| Let _ _ _ _ _ _ _ _ H_x H_f ⇒ Let H_x H_f
| ChooseLeft _ _ _ _ _ H_x1 ⇒ ChooseLeft H_x1
| ChooseRight _ _ _ _ _ H_x2 ⇒ ChooseRight H_x2
| Join _ _ _ _ _ _ _ _ H_x H_y ⇒ Join H_x H_y
end.
Definition unfold_eq {E A} {x : C.I.t E A} {t : Trace.I.t E} {v : A}
(H : Valid.t x t v) : H = unfold H.
destruct H; reflexivity.
Defined.
End Valid.
CoFixpoint trace_of_run {E A} {x : C.I.t E A} {v_x : A} (r_x : Run.I.t x v_x)
: Trace.I.t E.
destruct r_x.
- exact Trace.I.Ret.
- exact (Trace.I.Call c answer).
- exact (Trace.I.Let (trace_of_run _ _ _ _ r_x1) (trace_of_run _ _ _ _ r_x2)).
- exact (Trace.I.ChooseLeft (trace_of_run _ _ _ _ r_x)).
- exact (Trace.I.ChooseRight (trace_of_run _ _ _ _ r_x)).
- exact (Trace.I.Join
(trace_of_run _ _ _ _ r_x1) (trace_of_run _ _ _ _ r_x2)).
Defined.
CoFixpoint valid_of_run {E A} {x : C.I.t E A} {v_x : A} (r_x : Run.I.t x v_x)
: Valid.t x (trace_of_run r_x) v_x.
rewrite (Trace.I.unfold_eq (trace_of_run _)).
destruct r_x; simpl.
- apply Valid.Ret.
- apply Valid.Call.
- eapply Valid.Let; apply valid_of_run.
- apply Valid.ChooseLeft; apply valid_of_run.
- apply Valid.ChooseRight; apply valid_of_run.
- apply Valid.Join; apply valid_of_run.
Defined.
CoFixpoint to_run {E A} {x : C.I.t E A} {t_x : Trace.I.t E} {v_x : A}
(H : Valid.t x t_x v_x) : Run.I.t x v_x.
destruct H.
- apply Run.I.Ret.
- apply Run.I.Call.
- eapply Run.I.Let.
+ eapply to_run.
apply H.
+ eapply to_run.
apply H0.
- apply Run.I.ChooseLeft.
eapply to_run.
apply H.
- apply Run.I.ChooseRight.
eapply to_run.
apply H.
- apply Run.I.Join.
+ eapply to_run.
apply H.
+ eapply to_run.
apply H0.
Defined.
CoFixpoint trace_of_to_run {E A} {x : C.I.t E A} {t_x : Trace.I.t E} {v_x : A}
(H : Valid.t x t_x v_x) : Trace.I.Eq.t (trace_of_run (to_run H)) t_x.
rewrite (Trace.I.unfold_eq (trace_of_run _)).
destruct H; simpl.
- apply Trace.I.Eq.Ret.
- apply Trace.I.Eq.Call.
- apply Trace.I.Eq.Let; apply trace_of_to_run.
- apply Trace.I.Eq.ChooseLeft; apply trace_of_to_run.
- apply Trace.I.Eq.ChooseRight; apply trace_of_to_run.
- apply Trace.I.Eq.Join; apply trace_of_to_run.
Qed.
CoFixpoint to_of_run {E A} {x : C.I.t E A} {v : A} (r : Run.I.t x v)
: Run.I.Eq.t (to_run (valid_of_run r)) r.
rewrite (Run.I.unfold_eq (to_run _)).
destruct r; simpl.
- apply Run.I.Eq.Ret.
- apply Run.I.Eq.Call.
- apply Run.I.Eq.Let; apply to_of_run.
- apply Run.I.Eq.ChooseLeft; apply to_of_run.
- apply Run.I.Eq.ChooseRight; apply to_of_run.
- apply Run.I.Eq.Join; apply to_of_run.
Qed.
End I.